Painovoima

Aloittaja rintape, 02.10.2008, 12:00:40

« edellinen - seuraava »

rintape

Usein kuulee ja lukee että kaksi kappaletta vetää toisiaan puoleensa. Onko tämä tarkkaanottaen totta? Kaikki ovat varmaan nähneet kuvia joihin aika-avaruus on piirretty kaksiulotteisena tasona, johon sitten vaikka aurinko tai maa painaa kuopan. Eli siis massa jotenkin vääntää aika-varuutta ja tässä hyvin yksinkertaistetussa esimerkissä kaksi toisiaan lähestyvää massaa ikäänkuin putoaa samaan kuoppaan.

Olen myös ymmärtänyt että gravitaatiolinssissä ilmiön aiheuttava massa ei itse asiassa taivuta valoa, vaan aika-avaruutta ja valonsäde kulkee koko ajan täsmälleen suoraa reittiä, siis omasta mielestään. Meidän silmissämme se tekee mutkan.

Eli, vetääkö kaksi massaa (olkoot vaikka maa ja kuu) todellisuudessa toisiaan puoleensa? Vai vaikuttavatko ne ainoastaan aika-avaruuteen niin että meidän silmissämme se näyttää ikäänkuin ne vetäisivät toisiaan puoleensa?
Petri Rintala, Espoo
Panasonic DMC-GX8
Draco 80/500 APO
Celestron CGEM
QHY8L

jaava

Tuo aika-avaruuden taipuminen massan lähistöllä on Einsteinin peruja. Hän ohitti vaikean voimakentän vain toteamalla ettei siinä olekaan kysymyksessä voimakenttä vaan avaruuden taipuma. Sittemmin hän koitti kehittää kaikenteoriaa, jossa olisi ollut myös gravitaatio mukana - mutta ei hänellä ollut mahdollisuuksia kun ei ollut siihen aikaan tietoa tarpeeksi. Eikä ihan kauhean hyvältä tuo tilanne näytä vieläkään.

Nykyään kaikenteoriaksi on ehdolla supersäieteoria, jossa garvitaatio katsotaan voimakaentäksi ja sen välittäjähiukkaselle on annettu nimi "gravitoni". Jos kaksi massaa vaihtaa toistensa kanssa gravitoneja, vetävät massat toisiaan puoleensa.

Sama ilmiö on sähkö-/magneettikentillä, jossa välitähiukkanen on fotoni. Esimerkkinä elektroni pysyy atomin lähistöllä, koska se ja ytimen protoni vaihtavat fotoneja. Elektroni ja protoni siis vetävät toisiaan puoleensa.

JV

If no Higgs particle exists, we have a revolution in our hands.

RJ

Totuuden sijasta on ehkä parempi puhua luonnontieteellisestä maailmankuvasta. Luonnontieteisiin on sisäänrakennettu perimmäinen epävarmuus totuudesta, koska empiiriset kokeet pystyvät täysin varmasti ainoastaan falsifioimaan teorioita.  :-\

Lainaus käyttäjältä: rintape - 02.10.2008, 12:00:40
Eli, vetääkö kaksi massaa (olkoot vaikka maa ja kuu) todellisuudessa toisiaan puoleensa? Vai vaikuttavatko ne ainoastaan aika-avaruuteen niin että meidän silmissämme se näyttää ikäänkuin ne vetäisivät toisiaan puoleensa?

Newtonilainen painovoima on ihmisen arkimaailmassa aika tarkasti ottaen "totta", jos totuudella tarkoitetaan teorian kykyä ennustaa havaintoja. Yleinen suhteellisuusteoria on sitten täysin "totta" nykyisen havaintotarkkuuden rajoissa. Eli tässä mielessä jälkimmäinen vaihtoehtosi totuudenmukaisempi.

Toisaalta Einsteininkin painovoimassa on teoreettisia ongelmia/kysymysmerkkejä (singulariteetit), jotka kyseenalaistavat teorian pätevyysalueen. Tarkennus gravitaatioteoriaan seuraa jatkossa stringiteorian tms. muodossa.

rintape

Jollain tavallahan "tieto" painovoimasta täytyy välittyä. Kahden kappaleen välillä täytyy olla jonkinlaista tiedonvaihtoa, että ne tietävät toistensa painovoimasta. Samalla tavalla kuin tiedämme kuun olevan olemassa kun näemme sen siitä heijastuvan valon avulla, pitää valtamerien vesimassan tietää, että siellä se kuu on ja nyt on nousuveden aika. Tuohon tiedonvälitykseen on kaksi tapaa, joko suora tiedonvaihto vaikka niiden gravitonien avulla tai sitten avaruuden taivuttaminen, jolloin kappale ei havaitse suoraan toisen kappaleen painovoimaa vaan sen aiheuttaman muutoksen avaruuteen. Vai?

Noi säieteoriat taidan jättää suosiolla muiden planeettojen ylivertaisille olennoille. Hauska näitä on pohtia ihan näin arkitodellisuudenkin tasolla.
Petri Rintala, Espoo
Panasonic DMC-GX8
Draco 80/500 APO
Celestron CGEM
QHY8L

jaava

#4
Vaikka teoria on empiirisin kokein osottautunut tarkaksi, niin se ei aina takaa sen sisäisen rakenteen loogista eheyttä. Gravitaatio on tässä suhteessa  melkoisen vaikea pala ympättäväksi yhteen muiden voimien kanssa. 

Jos kenttä ymmärretään sellaiseksi entiteetiksi, jossa kentän vaikutus riippuu sekä paikasta avaruudessa/kentän vaikutusalueella että ajasta, niin gravitonin sisältävä kentän välittäjähiukkanen on passeli ja yksinkertainen selitys gravitaatiolle. Oli varsinainen gravitaation sisältävä teoria sitten supersäie, M-teoria yms. Voimakenttä tai yleensä kenttä, joka voisi syntyä ilman mitään välittäjämekanismia, on absurdi.

Teoriassa, jossa aika-avaruuden katsotaan vääntyneen (Yleinen suhteellisuusteoria), jäädään kaipaamaan selitystä sille, mikä vääntää sen jos ei voimakenttä. Onko massalla näkyvä/mitattavissa oleva koko ja sitten koko joka yltää gravitaatiokentän etäisyydelle siitä? Vai tarvitaanko aika-avaruudelle jokin kuvaus mikä sisältää ominaisuuden välittää massan läsnäoloa. Mutta sehän on juuri tuota kaareutumista. Miten tuo kaareutuminen sitten välittyy ties kuinka pitkälle massasta. Vastasiko Einstein tähän mitenkään vai totesiko vaan aika-avaruudella olevan tällaisen ominaisuuden.

Eikös tuo aika-avaruuden kaareutuminen välity valon nopeudella.

JV
If no Higgs particle exists, we have a revolution in our hands.

rintape

Tuo aika-avaruuden vääntyminen synnyttää toisenkin kysymyksen. Jos kerran massa taivuttaa aika-avaruutta, eli siis vaikuttaa siihen jollain tavalla, niin eikö itse aika-avaruudenkin pitäisi vaikuttaa massaan? Siinäpä meillä pimeää ainetta ja energiaa koko avaruuden täydeltä. Eikös pimeä aine voida todeta ainoastaan painovoiman vaikutuksesta?
Petri Rintala, Espoo
Panasonic DMC-GX8
Draco 80/500 APO
Celestron CGEM
QHY8L

RJ

Lainaus käyttäjältä: rintape - 05.10.2008, 14:33:54
Tuohon tiedonvälitykseen on kaksi tapaa, joko suora tiedonvaihto vaikka niiden gravitonien avulla tai sitten avaruuden taivuttaminen, jolloin kappale ei havaitse suoraan toisen kappaleen painovoimaa vaan sen aiheuttaman muutoksen avaruuteen. Vai?

Tällä hetkellä on vain yksi kunnolla toimiva teoria gravitaatiosta, yleinen suhteellisuusteoria. Tästä saadaan Newtonin painovoima ulos pienen tiheyden rajalla. Gravitonit ovat kiehtova idea, mutta ne ovat kovin hypoteettisia verrattuna vaikka sähkömagnetismin fotoneihin. Gravitoneille ei ole niin vahvoja teoreettisia perusteita, että niiden olemassaolosta voitaisiin sanoa mitään ilman empiirisiä havaintoja.

Einsteinin teoriassa painovoima käsitetään koordinaatistoefektiksi. Tämä ajatus seuraa ekvivalenssiperiaatteesta, jonka mukaan gravitaatiokenttää on mahdotonta erottaa muista voimista lokaalein mittauksin. Massaenergia välittyy avaruuden geometriaksi Einsteinin kenttäyhtälöiden kautta. Muuta selitystä teoria ei tälle anna.

Ehkä joku päivä gravitonit selittävät painovoiman, mutta juuri tätä selitystä ei mikään nykyhetkellä erityisen vahvasti tue.

Lainaus käyttäjältä: jaava - 07.10.2008, 08:23:56
Eikös tuo aika-avaruuden kaareutuminen välity valon nopeudella.

Joo, samaan tapaan kuin sähkömagnetismissa. Kerran synnytetyt gravitaatioaallot etenevät teorian mukaan loputtomiin avaruudessa. Gravitaatioaallot ovat avaruuden geometrian muutoksia, kun taas sähkömagneettiset aallot etenevät avaruudessa.

jaava

#7
LainaaMassaenergia välittyy avaruuden geometriaksi Einsteinin kenttäyhtälöiden kautta. Muuta selitystä teoria ei tälle anna.

Minusta on erikoista että niitä kutsutaan kenttäyhtälöiksi jos gravitaatio ei ole kenttä vaan koordinaatistoefekti:)

LainaaKerran synnytetyt gravitaatioaallot etenevät teorian mukaan loputtomiin avaruudessa. Gravitaatioaallot ovat avaruuden geometrian muutoksia, kun taas sähkömagneettiset aallot etenevät avaruudessa.

Siis avaruudella on ominaisuus kuljettaa massan aiheuttamaa vääristymää jollain nopeudella ja vielä loputtomasti. Kun aika-avaruus on äärellinen, mutta rajaton (tämähän on suhteellisuusteorian mukainen määritelmä), eikö se merkitse sitä että kerran syntyneet aallot säilyvät kunnes ne interferoivat muiden g-aaltojen kanssa jotka syövät niiden energiaa? Jos aaltojen energiaa ei mikään "söisi", niin lopputuloksena maailmankaikkeus olisi yhtä gravitaatio-aaltojen koskea. Jos g-aallot myös menettävät energiaansa, vallitsee maailmankaikkeudessa jonkinlainen dynaaminen tasapaino gravitaatio-aaltojen suhteen. Teoria ei taida esittää tapaa laskea kuinka paljon gravitaatio-aaltoja pitäisi olla havaittavissa jos tällainen dynaaminen tasapaino on saavutettu.

Vai voiko gravitaatioaallot interferoida. Ainakin niillä on summautumisominaisuus.

Miten sitten yllä esitettyyn vaikuttanee maailmankaikkeuden kiihtyvä laajeneminen.

Jos ylläolevassa on mitään järkeä, on aika-avaruudella myös ominaisuus sisältää energiaa (gravitaatio-aaltojen muodossa. Gravitaation ulkopuolellahan energia on massaan ja voimakenttiin liittyvää). Jos meillä olisi hypoteettinen maailmankaikkeus jossa olisi 50% ainetta ja  50% antiainetta ja ne annihiloisivat toisensa (sitä ennen on ollut massojen liikettä -> g-aaltoja), jäljelle jäisi vain gravitaatio-aaltoja. Tyhjä aika-avaruus, ei voimakenttiä, ei massaa mutta itse avaruuteen sisältyisi energiaa. Olisiko tuolla maailmankaikkeudella kuitenkin myös massa, vai onko massa ja energia ekvivalentteja?

JV
If no Higgs particle exists, we have a revolution in our hands.

RJ

#8
Kiva että keskustelua syntyy!

Lainaus käyttäjältä: jaava - 07.10.2008, 22:54:38
Minusta on erikoista että niitä kutsutaan kenttäyhtälöiksi jos gravitaatio ei ole kenttä vaan koordinaatistoefekti:)

Einsteinin yhtälöt ovat kenttäyhtälöitä, koska niissä esiintyy kenttäsuureita. Kenttäsuure on muuttuja, jolla on arvo kaikissa avaruuden pisteissä. Maxwellin yhtälöt ovat esimerkki vektorikenttäyhtälöistä (sähkö- ja magneettikentät ovat vektorikenttiä) ja diffuusioyhtälö on esimerkki skalaarikenttäyhtälöstä (lämpötila on skalaarikenttä). Einsteinin kentät ovat puolestaan tensorikenttiä, joiden avulla teoria on ilmaistu koordinaatistoista riippumattomassa muodossa. Edit: kyseiset tensorikentät ovat Einsteinin tensori (aika-avaruuden kaarevuus) ja energialiikemäärätensori (kaikki energia ja liikemäärä).

Lainaa
Siis avaruudella on ominaisuus kuljettaa massan aiheuttamaa vääristymää jollain nopeudella ja vielä loputtomasti. Kun aika-avaruus on äärellinen, mutta rajaton (tämähän on suhteellisuusteorian mukainen määritelmä), eikö se merkitse sitä että kerran syntyneet aallot säilyvät kunnes ne interferoivat muiden g-aaltojen kanssa jotka syövät niiden energiaa?

Gravitaatioaallot vaimenevat levittäytyessään avaruuteen. Lähellä lähdettä signaali on luonnollisesti voimakkaampi.

Lainaa
Jos aaltojen energiaa ei mikään "söisi", niin lopputuloksena maailmankaikkeus olisi yhtä gravitaatio-aaltojen koskea.

Näin onkin yleisen suhteellisuusteorian mukaan. Havainnot eivät ole toistaiseksi varmistaneet tätä, koska aaltojen aiheuttamat efektit ovat todella heikkoja.

Lainaa
Jos g-aallot myös menettävät energiaansa, vallitsee maailmankaikkeudessa jonkinlainen dynaaminen tasapaino gravitaatio-aaltojen suhteen.

Aallot eivät menetä energiaansa ilman vuorovaikutusta, mutta aaltojen energiatiheys pienenee kauempana lähteestä, koska sama energia leviää suurempaan tilavuuteen.

Kaizu

Tietämäni mukaan gravitatioaaltoja ei vielä ole suoraan havaittu. Siispä ne ovat vielä satuolentoja, nykykäsityksen kannalta tosin välttämättömiä sellaisia. Eikö gravitaatiokenttä gravitaatiovoimineen ja gravitoneineen kuulu lähinnä Newtonilaiseen maailmankuvaan.
Olen yrittänyt suhteellisuusteoriastakin löytää kohtaa josta voisi päätellä gravitaatioaaltojen nopeuden, en ole löytänyt.
Teorian "kauneus" on ainoa syy jonka olen keksinyt että gravitaatioaallolla olisi valon nopeus.
Maailmankaikkeudessa vallitsee kattonopeus kaikelle aineelle ja energialle. Sen sijaan se ei koske avaruutta itseään, alkupamauksen jälkeisen inflaation aikana avaruus on laajentunut niin että "kaukana" toisistaan olleet materiahippuset evät enää näe toisiaan. Nykyisten mittausten perusteella kaukaisessa tulevaisuudessa joudutaan uudelleen vastaavaan tilaan, jossa
kaukaisimmat kohteet etääntyvät toisistaan valon nopeutta suuremmalla nopeudella. Jos gravitaatio on avaruuden ominaisuus eikä virtuaalihippusia tarvitseva voimakenttä, sitooko valon nopeus jotenkin gravitaatioaaltoja.

Erityinen suhteellisuusteoria  kertoo hissivertauksella että gravitaatiota ja kiihtyvyyttä ei voi erottaa toisistaan. Minua on pikkupojasta asti häirinnyt se että minun mielestäni ero on selvä. Hissin eri kulmissa gravitaatiolla on pikkuriikkisen eri suunta.
Nykysessä työssäni olen sen jo todennutkin. Paperikoneen kokoisen kohteen päissä gravitaation suuntaero on jo todettavissa ja saivartelijan on merkittävä piirustuksiin että mitataanko peruslaattojen tasomaisuus optiikkaan vai gravitaatioon perustuvalla menetelmällä. Maapallon ja tason välinen ero tuolla alueella on enemmän kuin 0.1mm.
Vielä suuremmissa vaikeuksissa suhteellisuusteoria on selittäessään miksi vesi pysyy vesiämpärissä jota pyöritetään köyden päässä.

Kaizu
Kai Forssen

RJ

Lainaus käyttäjältä: Kaizu - 09.10.2008, 11:45:14
Eikö gravitaatiokenttä gravitaatiovoimineen ja gravitoneineen kuulu lähinnä Newtonilaiseen maailmankuvaan.

Gravitonit ovat peräisin yleisestä suhteellisuusteoriasta. Ne saadaan esiin kun teoria yritetään (ja epäonnistutaan :)) kvantisoida kvanttikenttäteoriaksi.

Lainaa
Olen yrittänyt suhteellisuusteoriastakin löytää kohtaa josta voisi päätellä gravitaatioaaltojen nopeuden, en ole löytänyt.

Lähtökohtaisesti c tulee yleiseen suhteellisuusteoriaan siitä hypoteesista, että fysiikka noudattaa erityistä suhteellisuusteoriaa aina lokaalissa koordinaatistossa. Gravitaatioaaltojen nopeudeksi c saadaan, kun Einsteinin kenttäyhtälöt ratkaistaan lineaarisella rajalla ja päädytään aaltoyhtälöön aika-avaruuden kaarevuudelle. Linearisointi on yleinen menetelmä, kun tutkitaan aaltoja fysiikassa.

Lainaa
Erityinen suhteellisuusteoria  kertoo hissivertauksella että gravitaatiota ja kiihtyvyyttä ei voi erottaa toisistaan. Minua on pikkupojasta asti häirinnyt se että minun mielestäni ero on selvä. Hissin eri kulmissa gravitaatiolla on pikkuriikkisen eri suunta.

Tässä analogiassa unohtuu helposti se, että hissikoppi tarkoittaa lokaalia koordinaatistoa, eli vain hyvin pientä aluetta yhden pisteen ympäristössä. Lokaalissa koordinaatistossa painovoimaa ei voi erottaa muista kiihtyvyyksistä.

Kaizu

Tarkennus: Tarkoitin että ajatus gravitaatiosta voimana kuuluu Newtonilaiseen maailmaan.

Lainaus käyttäjältä: Ricke - 09.10.2008, 23:54:08
Tässä analogiassa unohtuu helposti se, että hissikoppi tarkoittaa lokaalia koordinaatistoa, eli vain hyvin pientä aluetta yhden pisteen ympäristössä. Lokaalissa koordinaatistossa painovoimaa ei voi erottaa muista kiihtyvyyksistä.
Ei se unohdu, tällaista lokaalia koordinaatistoa ei oikeasti ole olemassa kuin matematiikan kirjassa.

Kaizu
Kai Forssen

RJ

Lainaus käyttäjältä: Kaizu - 10.10.2008, 00:53:32
Ei se unohdu, tällaista lokaalia koordinaatistoa ei oikeasti ole olemassa kuin matematiikan kirjassa.

Haluatko kritisoida matematiikan käyttöä fysiikassa yleisesti, vai erityisesti lokaaleja koordinaatistoja? Monikaan fysiikassa käytetty matemaattinen rakenne ei ole "oikeasti olemassa", miten ikinä olemassaolo sitten määritelläänkään. Matematiikan on yksinkertaisesti havaittu toimivan luonnoilmiöiden kuvailemisessa, ja sen takia sitä käytetään.

Kaizu

En halua kritisoida matematiikan käyttöä. Tarpeeksi pieniä asioita pohdiskellessa meillä ei muuta työkalua ole.
Newtonin fysiikan ja suhteellisuusteorian erot tulevat esiin meidän kannalta poikkeuksellisissa tilanteissa, ts. nopeassa liikkeessä ja suurissa kiihtyvyyksissä, joita inhimilliset havaitsijat eivät kestä. Tavanomaisissa oloissa erot ovat kovin pieniä. Avaruuden kaarevuushan ilmenee juuri siinä että gravitaation suunta vierekkäisissä pisteissä ei ole sama.
Jos teorian perustan ja todellisuuden välillä on samaa kokoluokkaa olevia epätarkkuuksia, herää kysymys että mihin asti tältä pohjalta tehdyt päätelmät ovat luotettavia.
Mielestäni mittaustulokset viimekädessä pitävät mallin pystyssä (tai sitten eivät). Suhteellisuusteorian ja joskus ehkä löytyvän "kaiken teorian" välinen ero normaaliolosuhteissa ei voi olla kovin suuri koska suhteellisuusteorian ennusteet pitävät hyvin yhtä mittausten kanssa. Se voisi ehkä piiloutua tämän kokoisten epätarkkuuksien alle.Uutta teoriaa tarvitaan selittämään kaikkeuden alkua ja viimeisten havaintojen pohjalta myös loppua sekä tietysti yhdistämään kvanttimekaniikka ja  makrotason fysiikka.
Tarkoitus on muistuttaa että jopa nykyfysiikan peruskalliossa on tiettyä pehmeyttä joka voi tulla esiin kun sen päälle rakennellaan kovin korkeita torneja.

Kaizu
Kai Forssen

RJ

Nyt mennään vähän otsikon ohi, mutta tämä on musta kovin tärkeää ja liittyy aiheeseen.

Lainaus käyttäjältä: Kaizu - 11.10.2008, 14:09:58
Tarkoitus on muistuttaa että jopa nykyfysiikan peruskalliossa on tiettyä pehmeyttä joka voi tulla esiin kun sen päälle rakennellaan kovin korkeita torneja.

Kiitos selvennyksestä, pointtisi on aiheellinen. Lähtökohtaisesti mielestäni on hyvä ajatella, että fysiikan leipälaji on kuvata mahdollisimman tarkasti ja konsistentisti havaintoja. Kokonaan toinen askel on tulkita mitä empiirisesti ja matemaattisesti toimiva teoria itseasiassa sanoo todellisuudesta. Tätä askelta ei voi ottaa ilman filosofista spekulointia, joka on käsittääkseni aina ollut jonkin sortin tabu teoreetikoiden keskuudessa.